YES 1.29 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule List
  ((isPrefixOf :: Eq a => [a ->  [a ->  Bool) :: Eq a => [a ->  [a ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] _ True
isPrefixOf [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule List
  ((isPrefixOf :: Eq a => [a ->  [a ->  Bool) :: Eq a => [a ->  [a ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] vw True
isPrefixOf vx [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule List
  (isPrefixOf :: Eq a => [a ->  [a ->  Bool)

module List where
  import qualified Maybe
import qualified Prelude

  isPrefixOf :: Eq a => [a ->  [a ->  Bool
isPrefixOf [] vw True
isPrefixOf vx [] False
isPrefixOf (x : xs) (y : ysx == y && isPrefixOf xs ys


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(xy1100), Succ(xy400000)) → new_primPlusNat(xy1100, xy400000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(xy30000), Succ(xy40000)) → new_primMulNat(xy30000, Succ(xy40000))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primEqNat(Succ(xy3000), Succ(xy4000)) → new_primEqNat(xy3000, xy4000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_esEs1(Left(xy300), Left(xy400), app(app(ty_@2, hc), hd), gd) → new_esEs3(xy300, xy400, hc, hd)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, cd, app(app(ty_Either, db), dc)) → new_esEs1(xy302, xy402, db, dc)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, cd, app(app(ty_@2, de), df)) → new_esEs3(xy302, xy402, de, df)
new_esEs2(Just(xy300), Just(xy400), app(ty_[], bag)) → new_esEs(xy300, xy400, bag)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), bbh, app(ty_Maybe, bcg)) → new_esEs2(xy301, xy401, bcg)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), app(app(ty_Either, bdg), bdh), bdc) → new_esEs1(xy300, xy400, bdg, bdh)
new_esEs1(Left(xy300), Left(xy400), app(app(app(ty_@3, ge), gf), gg), gd) → new_esEs0(xy300, xy400, ge, gf, gg)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), app(ty_Maybe, fh), cd, dh) → new_esEs2(xy300, xy400, fh)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), app(app(ty_Either, ff), fg), cd, dh) → new_esEs1(xy300, xy400, ff, fg)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, cd, app(ty_Maybe, dd)) → new_esEs2(xy302, xy402, dd)
new_esEs1(Right(xy300), Right(xy400), he, app(app(app(ty_@3, hg), hh), baa)) → new_esEs0(xy300, xy400, hg, hh, baa)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), app(ty_[], bdb), bdc) → new_esEs(xy300, xy400, bdb)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), app(app(app(ty_@3, bdd), bde), bdf), bdc) → new_esEs0(xy300, xy400, bdd, bde, bdf)
new_esEs1(Left(xy300), Left(xy400), app(app(ty_Either, gh), ha), gd) → new_esEs1(xy300, xy400, gh, ha)
new_esEs2(Just(xy300), Just(xy400), app(ty_Maybe, bbe)) → new_esEs2(xy300, xy400, bbe)
new_esEs1(Right(xy300), Right(xy400), he, app(app(ty_Either, bab), bac)) → new_esEs1(xy300, xy400, bab, bac)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, app(app(app(ty_@3, ea), eb), ec), dh) → new_esEs0(xy301, xy401, ea, eb, ec)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, cd, app(ty_[], ce)) → new_esEs(xy302, xy402, ce)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, app(app(ty_Either, ed), ee), dh) → new_esEs1(xy301, xy401, ed, ee)
new_esEs(:(xy300, xy301), :(xy400, xy401), app(ty_Maybe, bh)) → new_esEs2(xy300, xy400, bh)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, app(app(ty_@2, eg), eh), dh) → new_esEs3(xy301, xy401, eg, eh)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), bbh, app(ty_[], bca)) → new_esEs(xy301, xy401, bca)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), bbh, app(app(ty_@2, bch), bda)) → new_esEs3(xy301, xy401, bch, bda)
new_esEs2(Just(xy300), Just(xy400), app(app(app(ty_@3, bah), bba), bbb)) → new_esEs0(xy300, xy400, bah, bba, bbb)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), app(app(ty_@2, ga), gb), cd, dh) → new_esEs3(xy300, xy400, ga, gb)
new_esEs2(Just(xy300), Just(xy400), app(app(ty_Either, bbc), bbd)) → new_esEs1(xy300, xy400, bbc, bbd)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), app(ty_[], fa), cd, dh) → new_esEs(xy300, xy400, fa)
new_esEs(:(xy300, xy301), :(xy400, xy401), ba) → new_esEs(xy301, xy401, ba)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), app(ty_Maybe, bea), bdc) → new_esEs2(xy300, xy400, bea)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), bbh, app(app(ty_Either, bce), bcf)) → new_esEs1(xy301, xy401, bce, bcf)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, cd, app(app(app(ty_@3, cf), cg), da)) → new_esEs0(xy302, xy402, cf, cg, da)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, app(ty_[], dg), dh) → new_esEs(xy301, xy401, dg)
new_esEs1(Left(xy300), Left(xy400), app(ty_Maybe, hb), gd) → new_esEs2(xy300, xy400, hb)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), app(app(ty_@2, beb), bec), bdc) → new_esEs3(xy300, xy400, beb, bec)
new_esEs(:(xy300, xy301), :(xy400, xy401), app(app(app(ty_@3, bc), bd), be)) → new_esEs0(xy300, xy400, bc, bd, be)
new_esEs(:(xy300, xy301), :(xy400, xy401), app(app(ty_@2, ca), cb)) → new_esEs3(xy300, xy400, ca, cb)
new_esEs2(Just(xy300), Just(xy400), app(app(ty_@2, bbf), bbg)) → new_esEs3(xy300, xy400, bbf, bbg)
new_esEs3(@2(xy300, xy301), @2(xy400, xy401), bbh, app(app(app(ty_@3, bcb), bcc), bcd)) → new_esEs0(xy301, xy401, bcb, bcc, bcd)
new_esEs(:(xy300, xy301), :(xy400, xy401), app(app(ty_Either, bf), bg)) → new_esEs1(xy300, xy400, bf, bg)
new_esEs1(Right(xy300), Right(xy400), he, app(ty_[], hf)) → new_esEs(xy300, xy400, hf)
new_esEs1(Left(xy300), Left(xy400), app(ty_[], gc), gd) → new_esEs(xy300, xy400, gc)
new_esEs1(Right(xy300), Right(xy400), he, app(app(ty_@2, bae), baf)) → new_esEs3(xy300, xy400, bae, baf)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), cc, app(ty_Maybe, ef), dh) → new_esEs2(xy301, xy401, ef)
new_esEs1(Right(xy300), Right(xy400), he, app(ty_Maybe, bad)) → new_esEs2(xy300, xy400, bad)
new_esEs(:(xy300, xy301), :(xy400, xy401), app(ty_[], bb)) → new_esEs(xy300, xy400, bb)
new_esEs0(@3(xy300, xy301, xy302), @3(xy400, xy401, xy402), app(app(app(ty_@3, fb), fc), fd), cd, dh) → new_esEs0(xy300, xy400, fb, fc, fd)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_isPrefixOf(:(xy30, xy31), :(xy40, xy41), ba) → new_isPrefixOf(xy31, xy41, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: